
HACKING BUTTONS

Get control of other components around you using some additional
circuitry, you can "press" buttons with you Arduino

Discover : Optocoupler, connecting with other components

Time : 45 minutes

Level : 

Builds on projects : 1,2,9

Warning : You're no longer a beginner if you're doing this project. You'll be opening up an electronic
device and modifying it. You'll void your device's warranty, and if you're not careful, you might
damage the device. Make sure you're familiar with all the electronic concepts in the earlier projects
before you attempt this one. We recommend you use inexpensive items you don't mind damaging for
your first few projects, until you develop experience and confidence.

While the Arduino can control a lot of things, sometimes it is easier to use tools that are created for
specific purposes. Perhaps you want to control a television or a music player, or drive a remote control
car. Most electronic devices have a control panel with buttons, and many of those buttons can be
hacked so that you can "press" them with an Arduino. Controlling recorded sound is a good example. If
you wanted to record and play back recorded sound, it would take a lot of effort to get Arduino to do
that. It's much easier to get a small device that records and plays back sound, and replace its buttons
with outputs controlled by your Arduino.

Optocouplers are integrated circuits that allow you to control one circuit from a different one without
any electrical connection between the two. Inside an optocoupler is an LED and a light detector. When
the LED in the optocoupler is turned on by your Arduino, the light detector closes a switch internally.
The switch is connected to two of the output pins (4 and 5) of the optocoupler. When the internal
switch is closed, the two output pins are connected. When the switch is open, they're not connected.
This way, it's possible to close switches on other devices without connecting them to your Arduino.

In this example, the diagrams are for controlling a digital recording module that allows you to record
and playback 20 seconds of sound, but the basic premise holds for any device that has a switch you can
access. While it's possible to use this example without soldering any wires, it certainly makes things
easier. For more information about soldering, see "Knock lock" project (#12).

4
N

3
5

1
2

3

6
5

4

1
2

3

6
5

4

INGREDIENTS

RESISTOR

220 
OPTOCOUPLER

x1 x1

a b c d e f g h i j

a b c d e f g h i j

+ - + -

+ - + -

1

4

2
3

5
6

9

7
8

10

11

14

12
13

15
16

19

17
18

20
21

24

22
23

25
26

29

27
28

30

1

4

2
3

5
6

9

7
8

10

11

14

12
13

15
16

19

17
18

20
21

24

22
23

25
26

29

27
28

30

BUILD THE CIRCUIT

Fig.1 - [Circuit]

Fig.2 - [Schematic]

RESET

RX TX L

IOREF

3.3V

RESET

5V

Vin

GND

GND POWER

ANALOG IN

A0

A1

A2

A3

A4

A5

ON

DIGITAL

(PWM~)

12
13

~11
~10

~9
8

GND

AREF

7
~6

~5
4

~3
2

1
0RX

TX

2

4N
35

ARDUINO

UNO

5V

A1

A0

A2

A3

A4

A5

GND

12

~11

~10

8

~9

7

~6

~5

4

~3

2

TX1

RX0

13

EXTERNAL CIRCUIT

220 

BUTTON PAD CONTACTS
OPTOCOUPLER

1

2

3

6

5

4

1) Connect ground to your breadboard through the Arduino.

2) Place the optocoupler on the breadboard so that is straddles the center of the board (see circuit
diagram).

3) Connect pin 1 on the optocoupler to Arduino pin 2 in series with a 220-ohm resistor (remember,
you're powering an LED inside, you don't want to burn it out). Connect pin 2 of the optocoupler
to ground.

4) On the main board of the sound module there are a number of electrical components, including
a playback button.
To control the switch, you're going to have to remove the button. Flip the circuit board over and
find the tabs that hold the button in place. Gently bend the tabs back and remove the button
from the board.

5) Under the button are two small metal plates. This pattern is typical of many electronic devices
with pushbuttons. The two "forks" of this pattern are the two sides of the switch. A small metal
disc inside the pushbutton connects these two forks when you press the button.

6) When the forks are connected, the switch is closed on the circuit board. You will be closing the
switch with the optocoupler.
This method, closing a switch with an optocoupler, works only if one of the two sides of the
pushbutton's switch is connected to ground on your device. If you're not sure, take a multimeter
and measure the voltage between one of the forks and the ground on your device. You need to
do this with the device turned on, so be careful not to touch anywhere else on the board.
Once you know which fork is ground, disconnect the power to your device.

7) Next, connect one wire to each of the small metal plates. If you are soldering these wires, be
careful to not join the two sides of the switch together. If you are not soldering and using tape,
make sure your connection is secure, or the switch won't close. Make sure neither wire connects
to the other fork, or your switch will be closed all the time.

8) Attach the two wires to pins 4 and 5 of the optocoupler. Connect the side of the switch that is
grounded to pin 4 of the optocoupler. Connect the other fork to pin 5 of the optocoupler.

THE CODE

Name a constant

Most of the fun with this project is in the circuit and the optocoupler. The code is similar to the first
project you made with the Arduino. You're going to play the sound every 20 seconds by turning pin 2
HIGH.
Create a constant for the optocoupler control pin.

const int optoPin = 2;

Configure the pin direction

In setup(), set the optocoupler pin into an output.

void setup() {

pinMode(optoPin, OUTPUT);

}

Pull the pin high and low

The loop() turns optoPin HIGH for a few milliseconds, long enough for the optocoupler to close the
switch on the device. Then the optoPin becomes LOW.

void loop() {

digitlaWrite(optoPin, HIGH);

delay(15);

digitlaWrite(optoPin, LOW);

Wait for a while

Wait for 21 seconds for the whole message to play back before starting the loop() again.

delay(21000);

}

Upload the program to the Arduino then set it aside while you write your Processing sketch.

USE IT

Attach the battery to the sound recorder. Press and hold the record button on the device. While you're
holding the button, you can record audio into the microphone. Use your voice, the cat, or the pots and
pans in the kitchen to make some noise (but be careful with the cat).

Once you've satisfactorily recorded a sound, power your Arduino with the USB cable. Your recording
should start to play. If you recorded for the full 20 seconds, the sound should start again just a few
moments after it ends.

Try experimenting with different sounds and durations of toggling the playback with the delay() in your
program.
If you trigger the switch while a sound is playing, it will stop. How can you take advantage of this to
create unique sequences of sounds?

Integrated circuits are in virtually every electronic device. The large 28 pin chip on your Arduino is an IC
that houses the brains of the board. There are other ICs that support this one with communication and
power. The optocoupler and main chip on the Arduino are Dual In-line Package (DIP) chips. These DIP
chips are the kind that most hobbyists use because they easily fit in a breadboard and don't have to be
permanently soldered to be used.

The project example only played sound back at a regular interval. How could you incorporate the inputs
from earlier projects to trigger these sounds? What other battery powered things do you have around
the house that need an Arduino to control them? This technique of controlling an electronic device with
an optocoupler by connecting to the two sides of a switch can be used in many other devices. What
other devices do you want to control?

Optocouplers can control devices that are on a different circuit. The two circuits are electrically separated
from each other inside the component.

